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Entropy of a Uniformly Accelerating Black Hole
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Kinnersley has discussed the space–time of an arbitrarily accelerating point mass. We
select a simple case in which the black hole is uniformly accelerated and the mass does
not vary with time. We adopt thin film brick-wall model to calculate the entropy of black
hole. We find that both the temperature and the entropy density of black hole can be
calculated at every point on the horizon. This result indicates that the conclusion that
black hole entropy is proportional to its area can be applied to horizon not only globally,
but also locally.
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1. INTRODUCTION

Since Bekenstein suggested that the entropy of a black hole is proportional to
its surface area, the concerned research work has got much progress (Bekenstein,
1974; Gibbons and Hawking, 1977; Hawking, 1975). The brick-wall model sug-
gested by ’t Hooft (1985) gives a statistical explanation to the origin of black hole
entropy. Recently, the brick-wall model is developed to the thin film brick-wall
model (Liu and Zhao, 2001). In this paper, we adopt the thin film brick-wall model
to calculate the entropy of a uniformly accelerating black hole.

Kinnersley (1969) has discussed the space–time of an arbitrarily accelerating
point mass. The metric used in this paper is a simple case in which the black hole
is uniformly accelerated and the mass does not vary with time. In Section 2 we
give the line element of the space–time and the surface equation of the horizon.
Because the black hole is accelerated, the horizon is axisymmetric. Unlike the
spherically symmetric black hole, the different points on the horizon may have
different temperature. In Section 3 we use a method which is proposed by Zhao
and Dai (1992) to study the temperature of the black hole. It is obvious that in this
space–time the thermal equilibrium does not exist in large region, and the standard
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brick-wall method encounters difficulty in this situation. The thin film brick-wall
model is adopted to overcome this difficulty. We explain the thin film brick-wall
model in Section 4 and calculate the entropy of the Rindler horizon as an example.
The entropy of the uniformly accelerating black hole is studied in Section 5 in
detail, and we give conclusion and discussion in Section 6.

2. METRIC OF UNIFORMLY ACCELERATING BLACK HOLE

The metric of an arbitrarily accelerating point mass has been derived by
Kinnersley (1969):

ds2 = [1− 2ar cosθ − r 2( f 2+ h2 sin2 θ )− 2Mr−1] du2+ 2du dr

+ 2r 2 f du dθ + 2r 2h sin2 θ du dϕ − r 2dθ2− r 2 sin2 θ dϕ2, (1)

where

f = −a(u) sinθ + b(u) sinϕ + c(u) cosϕ,

h = b(u) cotθ cosϕ − c(u) cotθ sinϕ. (2)

a, b, c, andM are the functions of the retarted Eddington coordinateu.a is the value
of acceleration.b andc describe the variation ratio of the acceleration’s direction.
In the case of uniform acceleration,a = const., andb = c = 0. Furthermore, ifM
does not vary with time, the metric can be reduced to

ds2 = (1− 2ar cosθ − r 2 f 2− 2Mr−1) du2+ 2du dr+ 2r 2 f du dθ

− r 2 dθ2− r 2 sin2 θ dϕ2, (3)

where

f = −a sinθ. (4)

Replace the retarded Eddington coordinateu with the advanced Eddington coor-
dinatev, and adopt (−,+,+,+) signature; then the metric becomes

ds2 = −(1− 2ar cosθ − r 2a2 sinθ − 2Mr−1) dv2+ 2dv dr

− 2r 2a sinθ dv dθ + r 2 dθ2+ r 2 sin2 θ dϕ2. (5)

θ = 0 is the direction of acceleration and the space–time is axially symmetrical.
The determinant of the metric is

g = −r 4 sin2 θ , (6)
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and the nonzero contravariant components of the metric are

g01 = g10 = 1,

g11 = 1− 2ar cosθ − 2Mr−1,

g12 = g21 = a sinθ ,

g22 = r−2,

g33 = r−2 sin−2 θ. (7)

Now let us find the horizon equation of the space–time represented by Eq. (5).
Considering uniform acceleration,M = const., and axial symmetry, the surface
equation of the event horizon can be written as

H = H (r, θ ) = 0 or r = r (θ ), (8)

which should satisfy null surface qualification

gµν
∂H

∂xµ
∂H

∂xν
= 0. (9)

Substituting Eq. (7) into Eq. (9), we get(
1− 2ar cosθ − 2M

r

)(
∂H

∂r

)2

+ 2a sinθ
∂H

∂r

∂H

∂θ
+ 1

r 2

(
∂H

∂θ

)2

= 0. (10)

From Eq. (8), we have

∂H

∂r

∂r

∂θ
+ ∂H

∂θ
= 0. (11)

Substituting Eq. (11) into Eq. (10), we get

1− 2arH cosθ − 2M

r H
− (2a sinθ )r ′H +

r ′2H
r 2

H

= 0, (12)

where

r ′H =
(
∂r

∂θ

)
r=r H

. (13)

Surfacer H that satisfies Eq. (12) is the event horizon of the uniformly accelerating
black hole.

If we let M in Eq. (5) be zero, the space–time is simplified to Rindler space–
time relative to a uniformly accelerating observer. The metric is reduced to

ds2 = −(1− 2ar cosθ − r 2a2 sin2 θ )dv2+ 2dv dr

− 2r 2a sinθ dv dθ + r 2 dθ2+ r 2 sin2 θ dϕ2. (14)
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The horizon equation is reduced to

1− 2arH cosθ − (2a sinθ )r ′H +
r ′2H
r 2

H

= 0. (15)

The solution of Eq. (15) is a paraboloid of revolution

r H = 1

a(1+ cosθ )
. (16)

3. TEMPERATURE OF BLACK HOLE

In this section, we use a method which is proposed by Zhao and Dai (1992) to
study the temperature of the black hole. The calculation of this method is simple
and precise. It is fit for various black holes, including nonspherically symmetric
black holes and nonasymptotically flat black holes.

This new method is based on the Damour–Ruffini’s scheme (Damour and
Ruffini, 1976). The essential point is that if we use the tortoise coordinate, the
radial part of the Klein–Gordon equation near the horizon has the standard form
of the wave equation

∂28

∂r 2∗
+ 2

∂28

∂v∂r∗
= 0. (17)

This means that in the case of accelerating black hole the two-dimension line
element of space–time is obviously conformal with Minkowski space–time. We
can introduce parameterκ as an unknown quantity in the tortoise coordinate and
demand that the Klein–Gordon equation can be reduced to the standard form
as Eq. (17) near the horizon; then the parameterκ is determined. Equation (17)
indicates that the parameterκ appears in the spectrum and is proportional to the
radiation temperature; then the temperature of black hole is obtained.

From Eq. (12) we know thatr H is a function ofθ on the horizon. So the
tortoise coordinate transformation can be written as (Zhao and Dai, 1992)

r∗ = r + 1

2κ(θ0)
ln[r − r H (θ )],

θ∗ = θ − θ0, (18)

whereθ0 is an arbitrarily fixed parameter and does not vary in tortoise transforma-
tion. From Eq. (18) we can get

∂

∂r
=
[
1+ 1

2κ(r − r H )

]
∂

∂r∗
,

∂

∂θ
= ∂

∂θ∗
− r ′H

2κ(r − r H )

∂

∂r∗
; (19)
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∂2

∂r 2
=
[
1+ 1

2κ(r − r H )

]2
∂2

∂r 2∗
− 1

2κ(r − r H )2

∂

∂r∗
,

∂2

∂θ∂r
=
[
1+ 1

2κ(r − r H )

]
∂2

∂θ∗∂r∗
− r ′H

2κ(r − r H )

[
1+ 1

2κ(r − r H )

]
∂2

∂r 2∗

+ r ′H
2κ(r − r H )2

∂

∂r∗
,

∂2

∂θ2
= r ′2H

[2κ(r − r H )]2

∂2

∂r 2∗
+ ∂2

∂θ2∗
− 2r ′H

2κ(r − r H )

∂2

∂r∗∂θ∗

− r ′2H + r ′′H (r − r H )

2κ(r − r H )2

∂

∂r∗
. (20)

Substituting Eqs. (6), (7), (19), and (20) into the Klein–Gordon equation

1√−g

∂

∂xµ

(√−ggµν
∂8

∂xν

)
− µ28 = 0, (21)

we can get the coefficient of∂
28
∂r 2∗

term

{(1− 2ar cosθ − 2M
r )[2κ(r − r H )+ 1]− (2a sinθ )r ′H }r 2[2κ(r − r H )+ 1]+ r ′2H

2κ(r − r H )[2κ(r − r H )+ 1]r 2

(22)
If we demand that the Klein–Gordon equation reduces to the standard form as
Eq. (17) near the horizon, the limit of Eq. (22) must be 1 whenr → r H (θ0) and
θ → θ0. From this calculation of limit, we can deduce the expression ofκ as

κ = 1

2r H

M
r 2

H
− a cosθ − r ′2H

r 3
H

M
r 2

H
+ a cosθ + r ′2H

2r 3
H

. (23)

Using Damour–Ruffini’s approach (Damour and Ruffini, 1976), we can get the
temperature of black hole as

T = κ

2π
or β = 2π

κ
. (24)

We can see that the temperature of the black hole is a function ofθ .
For Rindler space–time,M = 0, temperature is a constant:

κ = a and β = 2π

a
. (25)
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4. THIN FILM BRICK-WALL MODEL

In the brick-wall model put forward by ’t Hooft (1985), the black hole entropy
is identified with the entropy of the thermal gas of quantum field excitations outside
the event horizon. This needs thermal equilibrium between the external fields and
black hole. However, this qualification is not satisfied in the case of accelerating
black hole, because the temperature on the horizon is not uniform as discussed in
Section 3.

Recently, a new model, the thin film brick-wall model, is developed from the
original brick-wall model (Liu and Zhao, 2001). This model considers that the
entropy of a black hole should be only related to its horizon, because the event
horizon is the characteristic surface of the black hole. Because of this opinion
and the fact that the density of quantum states near the horizon is divergent, it is
natural to take only the quantum field in a thin film near the event horizon into
account. If we adopt the thin film brick-wall model, we find that although the global
thermal equilibrium is not satisfied, local thermal equilibrium always exists. So
the difficulty of the original brick-wall model is overcome.

We will calculate the entropy of the Rindler horizon relative to a uniformly
accelerating observer in the next part of this section as an example of the thin film
brick-wall model.

As we obtained in Section 2, the metric of the Rindler space–time for a
uniformly accelerating observer is

ds2 = −(1− 2ar cosθ − r 2a2 sin2 θ ) dv2+ 2dv dr

− 2r 2a sinθ dv dθ + r 2 dθ2+ r 2 sin2 θ dϕ2. (26)

The equation of the Rindler horizon is a paraboloid of revolution

r H = 1

a(1+ cosθ )
. (27)

The solution of the Klein–Gordon equation has the following form (Lee and Kim,
1996; Hoet al., 1997):

8 = e−i [Ev−mϕ−S(r,θ )] . (28)

With the WKB approximation, we have

g11k2
r + 2(g12kθ − Eg01)kr + g22k2

θ +m2g33+ µ2 = 0, (29)

where

kr = ∂S

∂r
and kθ = ∂S

∂θ
(30)
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are radial wave number and angular wave number respectively. From Eq. (29) we
can obtain the relationship betweenkr andkθ as

k±r =
Eg01− g12kθ

g11
±
√

(g12kθ − Eg01)2− g11(g22k2
θ +m2g33+ µ2)

g11
, (31)

According to quantum statistics theory, the free energy is expressed by
(Ho et al., 1997; Lee and Kim, 1996; Li and Zhao, 2000; Liu and Zhao, 2001;
’t Hooft, 1985)

F = − 1

4π3

∫
dm

∫ +∞
0

d E
1

eβE − 1

∫
dθ dϕ

∫
dkθ

(∫ r H+ε+δ

r H+ε
k+r dr

+
∫ r H+ε

r H+ε+δ
k−r dr

)

= − 1

2π3

∫
dm

∫ +∞
0

d E
1

eβE − 1

∫
dθ dϕ

∫
dkθ

∫ r H+ε+δ

r H+ε
k̂r dr, (32)

where

k̂r =
√

(g12kθ − Eg01)2− g11(g22k2
θ +m2g33+ µ2)

g11
. (33)

Here we use the thin film brick-wall model (Liu and Zhao, 2001). In Eq. (32),ε is
the cuttoff distance andδ is the thickness of the thin film.

First we study the integration with respect tokθ andm. The expression in the
radical sign of Eq. (33) should satisfy

(g12kθ − Eg01)2− g11(g22k2
θ +m2g33+ µ2) ≥ 0. (34)

This gives the integration limit ofkθ andm. We use little mass approximation in
the process of integration, and the result is

F = − 1

6π2

∫ +∞
0

d E
E3

eβE − 1

∫
dθ dϕ

∫ r H+ε+δ

r H+ε
(g00)

−2r 2 sinθ dr. (35)

After the integration with respect toE, we get the expression of the free energy as

F = − π2

90β4

∫
dθ dϕ

∫ r H+ε+δ

r H+ε
(g00)

−2r 2 sinθ dr. (36)

From

S= β2∂F

∂β

∣∣∣∣
β=βH

, (37)
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we obtain the expression of entropy as

S= 4π2

90β3
H

∫
dθ dϕ

∫ r H+ε+δ

r H+ε
(g00)

−2r 2 sinθ dr. (38)

Considering the thin film brick-wall model, the integration onr can be pro-
cessed as

S≈ 4π2

90β3
H

∫
r 2

H sinθ dθ dϕ
∫ r H+ε+δ

r H+ε
(1− 2ar cosθ − r 2a2 sin2 θ )−2 dr

= 4π2

90β3
H

∫
r 2

H sinθ dθ dϕ
∫ r H+ε+δ

r H+ε

1

a4 sin4 θ [r − 1
a(1+ cosθ ) ]

2[r + 1
a(1− cosθ ) ]

2
dr

≈ 4π2

90β3
H

1

a2

δ

ε(ε + δ)
1

4

∫
r 2

H sinθ dθ dϕ. (39)

Substituting Eq. (25) into Eq. (39), we get

S= 1

90βH

δ

ε(ε + δ)
1

4

∫
r 2

H sinθ dθ dϕ. (40)

Selecting appropriateε andδ to satisfy

δ

ε(ε + δ) = 90βH , (41)

we have

S= 1

4

∫
r 2

H sinθ dθ dϕ = 1

4

∫
d A, (42)

where

d A= r 2
H sinθ dθ dϕ. (43)

This result indicates that the surface density of entropy on horizon is1
4. In next

section, we will study the entropy of the uniformly acceleration black hole. The
temperature on the horizon is not uniform. We will calculate the entropy density
at every point of the horizon at first, and then we obtain the total entropy through
integration.

5. ENTROPY OF UNIFORMLY ACCELERATING BLACK HOLE

In Section 2 we have obtained the metric of the uniformly accelerating black
hole

ds2 = −(1− 2ar cosθ − r 2a2 sin2 θ − 2Mr−1) dv2+ 2dv dr

− 2r 2a sinθ dv dθ + r 2dθ2+ r 2 sin2 θ dϕ2 (44)
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and the horizon equation

1− 2arH cosθ − 2M

r H
− (2a sinθ )r ′H +

r ′2H
r 2

H

= 0. (45)

We can see that the infinite redshift surface does not coincide with the event
horizon. We expect that there exists a frame in which these two surfaces are
identical.

Introduce a coordinate transformation

R= r − r H (θ ), d R= dr − r ′H dθ. (46)

The metric becomes

ds2 = −(1− 2ar cosθ − r 2a2 sin2 θ − 2Mr−1) dv2+ 2dv d R

− 2(r 2a sinθ − r ′H ) dv dθ + r 2 dθ2+ r 2 sin2 θ dϕ2. (47)

The form of metric can be changed to

ds2 = d00 dv2+ 2dv d R+ 2g02 dv dθ + g22 dθ2+ g33 dϕ2

=
(

g00− g2
02

g22

)
dv2+ 2dv d R+ g2

02

g22

(
g22

g02
dθ + dv

)2

+ g33 dϕ2, (48)

where

g00− g2
02

g22
= −

[
1− 2ar cosθ − 2M

r
− (2a sinθ )r ′H +

r ′2H
r 2

]
. (49)

We introduce another coordinate transformation

d2 = g22

g02
dθ + dv. (50)

The metric can be formally written as

ds2 = ĝ00 dv2+ 2dv d R+ ĝ22 d22+ ĝ33 dϕ2, (51)

where

ĝ00 = g00− g2
02

g22
, ĝ22 = g2

02

g22
, ĝ33 = g33. (52)

The following calculation about entropy is based on this metric.ĝ00 = 0 is just the
surface equation of horizon.

Let us substitute the determinant and the contravariant components of metric
into the Klein–Gordon equation, which describes the scalar field with massµ,

1√−g

∂

∂xµ

(√−ggµν
∂8

∂xν

)
= µ28. (53)
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We suppose that the solution has the following form (Hoet al., 1997; Lee and
Kim, 1996)

8 = e−i (Ev−mϕ)G(R,2), (54)

where

G(R,2) = eis(R,2). (55)

With the WKB approximation, we have

ĝ11k2
R− 2EkR+ ĝ22k2

2 +m2ĝ33+ µ2 = 0, (56)

where

kR = ∂S

∂R
, k2 = ∂S

∂2
. (57)

From Eq. (56), we can obtain the relationship betweenkR andk2 as

k±R =
E

ĝ11
±
√

E2− ĝ11(ĝ22k2
2 +m2ĝ33+ µ2)

ĝ11
. (58)

Free energy of the system is given by

F = −
∫ +∞

0
d E

0(E)

eβE − 1
, (59)

where0(E) is the total number of modes whose energy is not greater thanE.
Using the semiclassical quantization condition and the thin film brick-wall model,
we have (Hoet al., 1997; Lee and Kim, 1996; Li and Zhao, 2000; Liu and Zhao,
2001; ’t Hooft, 1985)

0(E) = 1

4π3

∫
dm

∫
d2 dϕ

∫
dk2

(∫ ε+δ

ε

k+Rd R+
∫ ε

ε+δ
k−R d R

)
= 1

2π3

∫
dm

∫
d2 dϕ

∫
dk2

∫ ε+δ

ε

k̂R d R, (60)

where

k̂R =
√

E2− ĝ11(ĝ22k2
2 +m2ĝ33+ µ2)

ĝ11
. (61)

The surface density of free energy on horizon can be expressed by

σF = −
∫ +∞

0
d E

σ0

eβE − 1
. (62)
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σF andσ0 are defined as

F =
∫
σF d A and 0 =

∫
σ0 d A, (63)

where

d A=
√

ĝ22ĝ33 d2 dϕ

= (r 2
H a sinθ − r ′H

)
sinθ d2 dϕ. (64)

Now, let us study the integration onk2 andm. We use little mass approxima-
tion in the process of integration, and the result is

0(E) = E3

6π2

∫
d2 dϕ

∫ ε+δ

ε

(ĝ11)−2(ĝ22ĝ33)−
1
2 d R

= E3

6π2

∫
d2 dϕ

∫ ε+δ

ε

(ĝ00)
−2(ĝ22ĝ33)

− 1
2 d R

≈ E3

6π2

∫
d A

∫ ε+δ

ε

(ĝ00)
−2 d R

=
∫

d A
E3

6π2

∫ ε+δ

ε

(ĝ00)
−2 d R. (65)

So the surface density of0(E) is

σ0 = E3

6π2

∫ ε+δ

ε

(ĝ00)
−2 d R. (66)

The surface density of free energy is given by

σF = − 1

6π2

∫ +∞
0

d E
E3

eβE − 1

∫ ε+δ

ε

(ĝ00)
−2 d R

= − π2

90β4

∫ ε+δ

ε

(ĝ00)
−2 d R. (67)

From

S= β2∂F

∂β

∣∣∣∣
β=βH

, (68)

we can obtain the surface density of entropy as

σS = 4π2

90β3
H

∫ ε+δ

ε

(ĝ00)
−2 d R. (69)

Becausêg00 = 0 is the surface equation of horizon,ĝ00 can be expressed by

ĝ00 = f (r, θ )(r − r H ). (70)
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Substituting Eq. (70) into Eq. (69), we complete the integration onR as

σS = 4π2

90β3
H

∫ ε+δ

ε

1

f 2(r − r H )2
d R

≈ 4π2

90β3
H f 2

H

∫ ε+δ

ε

1

R2
d R

= 4π2

90β3
H f 2

H

δ

ε(ε + δ) . (71)

In the space–time which has the form of Eq. (51), the surface gravity of horizon is

κ = −1

2
lim
R→0

(
∂ ĝ00

∂R

)
= − fH

2
. (72)

κ is just the value given by Eq. (23). Substituting Eq. (72) into Eq. (71), we get

σS = 4π2

90β3
H

1

(2κ)2

δ

ε(ε + δ)

= 4π2

90β3
H

1

κ2

δ

ε(ε + δ)
1

4
. (73)

SubstitutingβH = 2π
κ

into Eq. (73), we get

σS = 1

90βH

δ

ε(ε + δ)
1

4
. (74)

Selecting appropriate cutoff distanceε and thickness of thin filmδ to satisfy

δ

ε(ε + δ) = 90βH , (75)

we can obtain the surface density of entropy as

σS = 1

4
. (76)

The total entropy is

S=
∫
σS d A= 1

4
AH . (77)

6. CONCLUSION

By using the thin film brick-wall model, we have studied the entropy of the
uniformly accelerating black hole. We get our metric by simplifying Kinnersley’s
metric. The black hole is uniformly accelerated and the mass does not vary with
time. Because the black hole is accelerated, the horizon is axisymmetric. We use
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a new method to calculate the temperature of black hole at every point on the
horizon, and find that the temperature of black hole is the function ofθ . That is
to say, the different points of horizon surface may have different temperatures. To
overcome the difficulty encountered in standard brick-wall model, we adopt the
thin film brick-wall model in which only the local thermal equilibrium is needed.
We calculate the entropy density at every point of the horizon at first, and then
we obtain the total entropy through integration. The calculation indicates that the
conclusion that black hole entropy is proportional to its area can be applied to
horizon not only globally, but also locally.
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