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Entropy of a Uniformly Accelerating Black Hole
He Han,%? Zhao Zheng}! and Zhang Li-huat
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Kinnersley has discussed the space—time of an arbitrarily accelerating point mass. We
select a simple case in which the black hole is uniformly accelerated and the mass does
not vary with time. We adopt thin film brick-wall model to calculate the entropy of black
hole. We find that both the temperature and the entropy density of black hole can be
calculated at every point on the horizon. This result indicates that the conclusion that
black hole entropy is proportional to its area can be applied to horizon not only globally,
but also locally.
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1. INTRODUCTION

Since Bekenstein suggested that the entropy of a black hole is proportional to
its surface area, the concerned research work has got much progress (Bekenstein,
1974; Gibbons and Hawking, 1977; Hawking, 1975). The brick-wall model sug-
gested by 't Hooft (1985) gives a statistical explanation to the origin of black hole
entropy. Recently, the brick-wall model is developed to the thin film brick-wall
model (Liu and Zhao, 2001). In this paper, we adopt the thin film brick-wall model
to calculate the entropy of a uniformly accelerating black hole.

Kinnersley (1969) has discussed the space—time of an arbitrarily accelerating
point mass. The metric used in this paper is a simple case in which the black hole
is uniformly accelerated and the mass does not vary with time. In Section 2 we
give the line element of the space—time and the surface equation of the horizon.
Because the black hole is accelerated, the horizon is axisymmetric. Unlike the
spherically symmetric black hole, the different points on the horizon may have
different temperature. In Section 3 we use a method which is proposed by Zhao
and Dai (1992) to study the temperature of the black hole. It is obvious that in this
space—-time the thermal equilibrium does not exist in large region, and the standard
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brick-wall method encounters difficulty in this situation. The thin film brick-wall
model is adopted to overcome this difficulty. We explain the thin film brick-wall
model in Section 4 and calculate the entropy of the Rindler horizon as an example.
The entropy of the uniformly accelerating black hole is studied in Section 5 in
detail, and we give conclusion and discussion in Section 6.

2. METRIC OF UNIFORMLY ACCELERATING BLACK HOLE

The metric of an arbitrarily accelerating point mass has been derived by
Kinnersley (1969):

ds®> = [1 — 2ar cosd — r?(f2 4+ h?sirf9) — 2Mr ~1 du? + 2du dr
+2r2fdudd + 2r?hsirf6 dudp — r2de? —r?sirfode?, (1)
where
f = —a(u) sind + b(u) sing + c(u) cosy,
h = b(u) cotd cosp — c(u) cotd sing. (2)

a, b, c,andM are the functions of the retarted Eddington coordinasas the value

of accelerationb andc describe the variation ratio of the acceleration’s direction.
In the case of uniform acceleratian= const., and = ¢ = 0. Furthermore, iV
does not vary with time, the metric can be reduced to

ds® = (1—2arcosd —r2f2 —2Mr 1) du? + 2dudr+ 2r?f du o
—r2d6? —r? sir? 6 de?, ()
where
f = —a sinég. 4)

Replace the retarded Eddington coordinaigith the advanced Eddington coor-
dinatev, and adopt, +, +, +) signature; then the metric becomes

ds® = —(1 — 2ar cosf — r?a®sing — 2Mr 1) dv? + 2dv dr
—2r2asing dv dd +r2de? + r2sirf 6 de?. (5)

6 = 0 is the direction of acceleration and the space—time is axially symmetrical.
The determinant of the metric is

g=—rsirfo, (6)
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and the nonzero contravariant components of the metric are
gOl — glO — 1,
gt =1 - 2arcosd — 2Mr 1,
g'? = g?* = asing,

33

g® =r2sin29. )

Now let us find the horizon equation of the space—time represented by Eq. (5).
Considering uniform acceleratio)] = const., and axial symmetry, the surface

equation of the event horizon can be written as

H=H(®60)=0 or r=r(), (8)
which should satisfy null surface qualification
oH oH
o =0 ©)
aXH XY
Substituting Eqg. (7) into Eqg. (9), we get
2M\ [9H\? JHOH 1 /9H\?
1—2arcost — — || — 2asinf——+ —|—] =0. (10
( r)(ar)+ or 89+r2<89> (10)
From Eg. (8), we have
oH or oH
4+ —— =0 11
ar 96 + 26 (11)
Substituting Eq. (11) into Eq. (10), we get
2M r
1— 2ary cost — — — (2asind)r, + = =0, (12)
'y ]
where
ar
== . 13
" (ae)r=m 4

Surfacery that satisfies Eq. (12) is the event horizon of the uniformly accelerating

black hole.

If we let M in Eqg. (5) be zero, the space—time is simplified to Rindler space—

time relative to a uniformly accelerating observer. The metric is reduced to
ds® = —(1 — 2ar cosd — r2a?sir? 6)dv? + 2dv dr
—2r2asingdv dd +r2de? +r2sirf 6 de?. (14)
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The horizon equation is reduced to
2

: r
1— 2ary cosd — (2asind)ry, + é =0. (15)
The solution of Eq. (15) is a paraboloid of revolution
1
gy = —. 16
H a(1+ cosb) (16)

3. TEMPERATURE OF BLACK HOLE

In this section, we use a method which is proposed by Zhao and Dai (1992) to
study the temperature of the black hole. The calculation of this method is simple
and precise. It is fit for various black holes, including nonspherically symmetric
black holes and nonasymptotically flat black holes.

This new method is based on the Damour—Ruffini’'s scheme (Damour and
Ruffini, 1976). The essential point is that if we use the tortoise coordinate, the
radial part of the Klein—Gordon equation near the horizon has the standard form
of the wave equation

3%d N 32d
ar2 avar,

—0. 17)

This means that in the case of accelerating black hole the two-dimension line
element of space—time is obviously conformal with Minkowski space-time. We
can introduce parameteras an unknown quantity in the tortoise coordinate and
demand that the Klein—Gordon equation can be reduced to the standard form
as Eq. (17) near the horizon; then the parametir determined. Equation (17)
indicates that the parameterappears in the spectrum and is proportional to the
radiation temperature; then the temperature of black hole is obtained.

From Eq. (12) we know thaty is a function ofé on the horizon. So the
tortoise coordinate transformation can be written as (Zhao and Dai, 1992)

re=r+

2 (60) In[r —ru(0)],
0, =6 — 6o, (18)

wheret, is an arbitrarily fixed parameter and does not vary in tortoise transforma-
tion. From Eqg. (18) we can get

N o
ar 2(r —ry) |or,’
SO 0

—_—=— - 19
00 00, 2k(r —ry)or, (19)
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L PR 2 92 1 9
ar2 2c(r —ry)] a2 2u(r —ry)2ar,’

32 1 32 ry 1 a2
P — 1+ — + R
a0or 2¢(r —ry) |80,0r,  2(r —ry) 2c(r —ry)or?

9
2c(r —ry)2or,’
a2 re CENNE 2r 32

907~ 2k — 1) 012 T 902 2e(r — ) 01,30,
CrEAri —ra) 9
2c(r —ry)2  or,’

(20)

Substituting Egs. (6), (7), (19), and (20) into the Klein—Gordon equation

1 0
/g axn

we can get the coefficient r‘f term

ad
axv

(v=ae" e ) - w2 o (21)

{(1—2arcosd — )2k (r —ry) + 1] — (2asinO)r{y}r2[2«(r —rp) + 1] +r{?
2c(r —rp)[2c(r —ry) +1r2

(22)
If we demand that the Klein—Gordon equation reduces to the standard form as
Eqg. (17) near the horizon, the limit of Eq. (22) must be 1 whes ry(60) and
6 — 6o. From this calculation of limit, we can deduce the expressianas

M _ _re
1 rﬁ acoso rﬁ

= — . (23)
2
2 M 4 acosd + 7+
Using Damour—Ruffini's approach (Damour and Ruffini, 1976), we can get the
temperature of black hole as

21
T=2 or B=—

o — (24)

We can see that the temperature of the black hole is a functién of

For Rindler space-timeyl = 0, temperature is a constant:

k =a and ,3=2£. (25)
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4. THIN FILM BRICK-WALL MODEL

In the brick-wall model put forward by 't Hooft (1985), the black hole entropy
is identified with the entropy of the thermal gas of quantum field excitations outside
the event horizon. This needs thermal equilibrium between the external fields and
black hole. However, this qualification is not satisfied in the case of accelerating
black hole, because the temperature on the horizon is not uniform as discussed in
Section 3.

Recently, a new model, the thin film brick-wall model, is developed from the
original brick-wall model (Liu and Zhao, 2001). This model considers that the
entropy of a black hole should be only related to its horizon, because the event
horizon is the characteristic surface of the black hole. Because of this opinion
and the fact that the density of quantum states near the horizon is divergent, it is
natural to take only the quantum field in a thin film near the event horizon into
account. If we adopt the thin film brick-wall model, we find that although the global
thermal equilibrium is not satisfied, local thermal equilibrium always exists. So
the difficulty of the original brick-wall model is overcome.

We will calculate the entropy of the Rindler horizon relative to a uniformly
accelerating observer in the next part of this section as an example of the thin film
brick-wall model.

As we obtained in Section 2, the metric of the Rindler space-time for a
uniformly accelerating observer is

ds® = —(1 — 2ar cosf — r2a’sir? 6) dv? + 2dv dr
—2r2asing dv dd +r2de? +r?sirf 6 de?. (26)
The equation of the Rindler horizon is a paraboloid of revolution

1

- a(l+cosd)’ 27

MH

The solution of the Klein—Gordon equation has the following form (Lee and Kim,
1996; Hoet al., 1997):

d = e—i[Ev—mgo—S(r,O)]' (28)
With the WKB approximation, we have
gllkTZ + 2(912k9 _ Eg°1)k, + QZZkg + mZg33 + MZ =0, (29)

where

9S 9S
=2 and k= o 30
k= k=7 (30)
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are radial wave number and angular wave number respectively. From Eqg. (29) we
can obtain the relationship betwelgnandk, as

" Egol _ g12k9 \/(glsz — EgOl)2 — gll(gZZkg + m2933 + I'LZ)
kf - gll + gll

According to quantum statistics theory, the free energy is expressed by
(Ho et al, 1997; Lee and Kim, 1996; Li and Zhao, 2000; Liu and Zhao, 2001;
't Hooft, 1985)

1 +00 1 ry+e+s N
F=————/dm dE——— [ dod d dr
4;13/ /0 eﬂE—l/ ¢/ k0<[rH+e <
ry+e
+f k;dr)
rq+e+s

1 400 1 FH+€+8A
s [am [ e [ ok [T ear @)

o (0% — EQY? — g(@A¢ + g + 112)

ke = gL :
Here we use the thin film brick-wall model (Liu and Zhao, 2001). In Eq. (88,
the cuttoff distance andlis the thickness of the thin film.

First we study the integration with respeckioandm. The expression in the
radical sign of Eq. (33) should satisfy

., (3D

where

(33)

(9'%s — EQ™)? — g0k + m’g™ + 1) 2 0. (34)

This gives the integration limit df, andm. We use little mass approximation in
the process of integration, and the result is

1 +00 E3 rn+e+s P
Fo _@/O ouzm/deol(p/r (Goo) 2r2sinodr.  (35)

Hte

After the integration with respect 8, we get the expression of the free energy as

77.'2 rq+e+s -
F=-—— ] dod ~“resin6 dr. 36
ooz [ 0 [ (o) s (36)
From
oF
S=p>"— (37)

9B 1 p=pu
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we obtain the expression of entropy as

ry+e+s -
de d(pf ~“resino dr. 38
—ars [arae [ (o (39

Hte€

Considering the thin film brick-wall model, the integration orcan be pro-
cessed as

47.[2 rg+e+s
S~ —3/rf| sing do d(p/ (1 — 2ar cost — r?a®sirf 9)~2dr
9085 r

Hte€
4 2 rq+e+s 1
" /rHsm9d0d<p/ Tod I 5 T Sar
9OﬂH rH+e a*sin ofr — a(l+ coSO)] [r+ a(l—COSG)]
N 472 1 1)

10, .
~ @;mz/rH Sln9d9d(p. (39)

Substituting Eg. (25) into Eg. (39), we get

1 s 1[,.
_ - 6 do do. 40
9081 e(e+5)4/rHS'n ¢ (40)

Selecting appropriate ands to satisfy

)
= 9084, 41
(e +9) BH (41)
we have
11, . 1
S=- rHsm9d9dq)=—/dA, (42)
4 4
where
dA=rZsin6 do do. (43)

This resultindicates that the surface density of entropy on horiz%)nrhsnext
section, we will study the entropy of the uniformly acceleration black hole. The
temperature on the horizon is not uniform. We will calculate the entropy density
at every point of the horizon at first, and then we obtain the total entropy through
integration.

5. ENTROPY OF UNIFORMLY ACCELERATING BLACK HOLE

In Section 2 we have obtained the metric of the uniformly accelerating black
hole

ds® = —(1 — 2ar cosf — r2asirf 9 — 2Mr ) dv? + 2dv dr
— 2r?asind dv dd + r2de? + r2sirf 0 de? (44)
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and the horizon equation

2M . r?
1— 2ary cosh — —- (2asind)ry, + r—g =0. (45)
H H

We can see that the infinite redshift surface does not coincide with the event
horizon. We expect that there exists a frame in which these two surfaces are
identical.

Introduce a coordinate transformation

R=r—-ry(), dR=dr —rdo. (46)
The metric becomes
ds®> = —(1 — 2ar cosd — r?a?sirf6 — 2Mr 1) dv? + 2dvdR
—2(r2asing —r},)dv d +r2de? +r?sirf 6 de?. (47)
The form of metric can be changed to

ds® = doode + 2dv dR+ 2goodv d + gzzd92 + gggd(pz

2 2 2
= <goo — @> dv? + 2dv dR+ 22 <% do + dv) + gazde?,  (48)
022 022 \ do2
where
932 2M H / rll-%
Joo— —~ = —|1—2arcos) — — —(2asinf)ry + — |. (49)
022 r r
We introduce another coordinate transformation
do = 2249 4 dv. (50)
Jo2
The metric can be formally written as
ds? = goodvz—l—ZdVdR—i- gzzd®2+gg3d(p2, (51)
where
2 2
800 = oo — %, Oz = %, 033 = Oa3. (52)
O22 022

The following calculation about entropy is based on this mefg= 0 is just the
surface equation of horizon.

Let us substitute the determinant and the contravariant components of metric
into the Klein—Gordon equation, which describes the scalar field with pass

1 d 0D
/=g ox" (V ‘99“VW> = 1o, (®3)




1790 Han, Zheng and Li-hua

We suppose that the solution has the following form @al, 1997; Lee and
Kim, 1996)

o = e EV-MIG(R, ©), (54)
where
G(R, ©®) = &3(RO), (55)

With the WKB approximation, we have

g k2 — 2Ekg + 622k + m?g% + 42 = 0, (56)
where
S 39S
kg = —, =—. 57
R=7m Ko =70 (57)

From Eq. (56), we can obtain the relationship betwiegandkg as

E \/EZ — GG + M2 + )
+ .

kf=_— _ 58
R 0 gt (58)
Free energy of the system is given by
+00 F(E)
F=- /0 d Eﬁ, (59)

whereI'(E) is the total number of modes whose energy is not greater Ehan
Using the semiclassical quantization condition and the thin film brick-wall model,
we have (Heet al, 1997; Lee and Kim, 1996; Li and Zhao, 2000; Liu and Zhao,
2001; 't Hooft, 1985)

1 €+8 € _
F(E):m/dm/d(ad(p/dlq,)(/e k‘§dR+/;+5deR)
1 €+8
= —/dm/d@dgp/dk@/ ke dR, (60)
23 .

A \/E2 — G(GPKE + m2g33 + u2)
kr = git .

where

(61)

The surface density of free energy on horizon can be expressed by

+00 or
OF = — dE———. (62)
F /o efE 1
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or andor are defined as

F:/aFdA and F:/crrdA, (63)

where

A= \/022033dO dg
= (r3asind —r{;) sing dO de. (64)

Now, let us study the integration ¢&@ andm. We use little mass approxima-
tion in the process of integration, and the result is

3 €+8
ME) = o [dody [ @ 2GR
ES €+8 1
— oz [d0de [ (@) *(@ntd FOR
T €
E3 €+6
—Z/dA/ (B0 2R

_ f dA— / (Goo) 2dR. (65)
So the surface density 6f(E) is

22

ES3 €+s
o=z (@R (66)
T Je

The surface density of free energy is given by

1 +00 ES €+6 )
= —— dE— Goo) “dR
OF 6712,/0 oFE _ 1/; (800)

7.[2 €+48
- oo | @0 *dR (67
From
oF
S=p>— (68)
B lp—p,
we can obtain the surface density of entropy as
47.[2 €+8 )
= 0oo) “dR. 69
7= 5053 [ @ (69)

Becausdyo = 0 is the surface equation of horizdip, can be expressed by
Goo = f(r,0)(r —rn). (70)
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Substituting Eq. (70) into Eqg. (69), we complete the integratioiR@s

47.[2 €+$ 1
= dR
7~ 9083 / f2r —ru)?

4 2 €+4
~ / 1 dR
983 f3 J. R

4r? b
9083 f2 €(e + )
In the space—time which has the form of Eq. (51), the surface gravity of horizon is

(71)

1. 9000 fr
= aim () =3 72
K is just the value given by Eq. (23). Substituting Eq. (72) into Eq. (71), we get
472 1 1)
os

~ 9083 (2)2 € +9)
472 1 é 1

e 73
9083 k2 e(e +8) 4 (73)

Substitutingy = 2 into Eq. (73), we get
s 1 8 ! (74)

T 90Bh e(e +0) 4
Selecting appropriate cutoff distane@nd thickness of thin filnd to satisfy
)

— =908, 75
c+9) BH (75)

we can obtain the surface density of entropy as

1
0s = Z (76)
The total entropy is
1

S:/osdAzzAH. (77)

6. CONCLUSION

By using the thin film brick-wall model, we have studied the entropy of the
uniformly accelerating black hole. We get our metric by simplifying Kinnersley’s
metric. The black hole is uniformly accelerated and the mass does not vary with
time. Because the black hole is accelerated, the horizon is axisymmetric. We use



Entropy of a Uniformly Accelerating Black Hole 1793

a new method to calculate the temperature of black hole at every point on the
horizon, and find that the temperature of black hole is the functiah @hat is

to say, the different points of horizon surface may have different temperatures. To
overcome the difficulty encountered in standard brick-wall model, we adopt the
thin film brick-wall model in which only the local thermal equilibrium is needed.
We calculate the entropy density at every point of the horizon at first, and then
we obtain the total entropy through integration. The calculation indicates that the
conclusion that black hole entropy is proportional to its area can be applied to
horizon not only globally, but also locally.
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